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As is well known, the Chaplygin equations for the motion of a nonholonomic
system [ 1] are derived on the assumption that the independent parameters
are true coordinates. In [2 ], chaplygin introduced a method for the
integration of these equations, based on the use of a new variable 7,
which is related to the time ¢ by means of the differential relation

dv = Ndt (0.1)

where N is a suitable function of the independent parameters. This func-
tion was called the additional multiplier by Chaplygin. However, already
in the case of plane nonholonomic motion, which he uses to illustrate
his theorem by means of an example, he in fact employs quasicoordinates
(it must be noted that the general concept of quasicoordinates was
introduced historically later), without taking due account of the situ-
ation. While Chaplygin’s example is strictly correct, the extension of
his theorem of the additional multiplier still remains without theoretical
justification. Later, some authors (see, for example, [3 1), expressed
their doubts as to the validity of Chaplygin’s theorem in the case of
quasicoordinates. With the aid of superfluous coordinates, Shul’gin [ 4]
showed that under certain conditions the form of Chaplygin’s equations
is preserved when some of the superfluous coordinates are quasicoordi-
nates.

However, the theoretical justification of the equations of phaplygin
in the case of quasicoordinates has remained open. Let us mention the
papers [ 6,7 ] of Novoselov, where an attempt is made to carry over
Chaplygin’s theorem to the case of nonlinear nonholonomic coordinates,
but without an actual proof of the stated results. In the present paper
Chaplygin’s equations are extended to the case when the independent
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parameters are quasicoordinates; a theoretical justification of the
method of the additional multiplier is given in this case; and there is
given a class of problems in which the application of quasicoordinates
lies within the limits of the theory of Chaplysgin.

1. Chaplygin’s equations for quasicoordinates. Consider a
nonholonomic system, whose position is defined in terms of generalized

coordinates q,;, ..., Tp Suppose that there are m degrees of freedom
(m < n), i.e. there ex1st n-nm nonlntegrable constraints relating the
generalized velocities ql, cery qn, these constraining relations are sup-

posed to be linear and homogeneous. The coefficients in these equations,
as well as the Lagrangian L, depend only on the first m generalized co-
ordinates.

Let us introduce as independent parameters the quasicoordinates 7,
., m, by means of m linear equations (here, and in what follows, re-
peated indices denote summation, as is customary):

Ty = Gapgp (@, 8=1,....m) (1.1)

where the coefficients a,4 are functions of q;, ..., g,. Using (1.1) and
the n — m equations of nonholonomlc constraints, let us express all the
generallzed velocities ¢,, ..., ¢, in termms of the m independent quasi-
velocity 7, ..., nn:
Gi=buts  (i=1,..,n s=1,...,m) (1.2)

From this it follows that the variations of the generalized velocities
are given in terms of the variations of the independent parameters as

8q; = biudmy (G=1,..,n a=1,...,m) (1.3)
We shall begin with the d’Alembert-Lagrange equations written in

generalized coordinates
4 oL oL _ o
(W?Z_EEI—)G%_O (l——l,...,n)
Substituting the 8q; from (1.3) into the last equation, we obtain a

sum equal to zero; in view of the independence of the variations Om,,
this sum leads to the m separate equations

d JL oL .
‘W(?z;>bm— 31, —biy =0 (i=1,...,n a=1,...,m) (1.4)

In these equations, the Lagranglan [.depends on the m coordinates
9y, +++» g, and the n velocities q;, ..., q,, i.e. L =L(q, q .). Upon
replacing the ¢; by their values from (1.2), we obtain a funct1on
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L* = [f(qﬁ, m,), for which

L* (gg, s) = L (gps bioT0o) (1.5)

From (1.5) it can be easily shown that

oL oL 9L o O 3_Lbfa=_‘3i‘fb§a_§£13ics?_@i bsa
9q dgg 8gi dq, dg; Bqﬁ aq; 8q3
L AR PO TN
63;‘0———6—;“ ioy W(Bqt e = 77 Os't aqi 90 Balla
i=1..,n aBos=1,....,m

which, upon substitution into (1.4), making use of the notations

iy Pia oL, 0L (1.6)
dgg P° 7 Om,? g5 P*T o,

i)

lead us to

d oLr _ aLr | 9L (% Py (£=1,2.3,...,n) .7
E-t_ai.ta 9y aq; (ana o, ° %Bo=1..,m

Equations (1.7) are Chaplygin’s equations in quasicoordinates. It is
readily seen that Equations (1.7) coincide with Chaplygin’'s equations
[1] when @4, ..., @, coincide with the true coordinates, i.e. when
m, =9, la=1, ..., m). Indeed, in this case

baﬁ = 6aﬁ7 de = 6Ba (641{% 6@0_ Krg‘y‘;gg%g 8 )

and Equations (1.7) become

_oL* oL L (9, 8b; . a,6=1,...,m
_d_a?_ L __( js Jd)qa:O <,_ . > (1.8)
at aqa aq‘x aq1‘ aqa aqc j=m+1,...,n

Equations (1.7) differ from the equations of Boltzmann-Hamel [51, in
quasicoordinates, in the nonholonomic terms. In the construction of the
coefficients yt- in the Boltzmann-Hamel equations one employs both the
direct and the inverse matrices of the transformation linking the co-
ordinates and the quasicoordinates. In the construction of the analogous
terms in Equations (1.7) one employs coefficients from a single rectan-
gular matrix (with n rows and m colums), which does not have an inverse.

2. Theorem of the additional multiplier in gquasicoordinates.
Consider a nonholonomic system of Chaplygin type with two degrees of
freedom. As free parameters let us choose quasicoordinates m, and 7y, in
terms of which all the true coordinates are given by
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§i == biyTy + gy (i=1,....n) (2.1)

Suppose that the Lagrangian L _depends only on g, g, and all the
generalized velocities q,, ..., qn, and that the coefficients b;, and b,
are functions of ¢, and g,. The equations of motion (1.7) in the system
under consideration may be written as follows:

d oL* oL* . d oL* oL¥ . c
— - = 1,5, Wa—m“"a‘;{;—_“ls (2.2)
where

oL / 8k, ab.
:T(ﬂ ﬂ (=1, n (2.3)

amy - Onts

and the function L* = L* (ql, 94, ™y, m,) is obtained from L by replacing
the generalized velocities ¢; by their equivalents from (2. 1).

In order to transform Equations (2.2) let us introduce a new independ-
ent variasble r by means of Equation (0.1). Suppose that the kinetic
energy T*of the system is a quadratic form in the quasicoordinates 7,
and #,. Using primes to denote differentiation with respect to r, we ob-
tain

2T* = Ly,® - 2Mmy ity + Losty = N*(Lym + 2M 'y +- Lorty'®) = 2T°
3%3 = 17\/7315!
ar* _ aT° dng 1 aT° aT* are 1 aN oT° _,

ory  Ongome | Nomg g, 0q, N og, omy e (wBo=12)

From these equations, in view of (1.6), we deduce that

ors _ orr, _oT° 1 oN ., OT" ..
am, — 0q, *PT Gm, N dq, *Pom]
d oT* ...C.l_. ore 1 aN 8T°b , (. Bs=1.2)
dt 95‘{5 dv amy N dg, omy’ 0T
Using these equations, Equations (2.2) become
o Q d a o a Q
iﬁ.ﬂ.‘&:n2'ﬁ, ———L—---l‘-:——nl’R (2.4)

dy dny’ 8n1 dt ony’ 0ty

where L° = T° -~ V, and the function R is defined by

1 8N aT° 1 N aT°
(2.5)

R SNS— TV— 61{1 03‘[2' _N- aﬂg 81‘[1'

with
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N N 9qg aN

— = = —} =
b,  Oqp Im,  dq p¢ (@ B=1D)

Equation (2.4) takes the ordinary form of the second-order Lagrange
equations, provided that the function N is chosen so that the following
equation holds:

R=0 (2.6)
Let us introduce canonical variables

oT° , , oT°
P = W:N2(Lln1 + Mm,'), P2 = Fr

= N2 (M:l'tl' +L2:|1¢2') (27)

Replacing in 6[4/8éi the quantities di by p, and p,, by means of
Equations (2.1) and (2.7), we cbtain

oL 1

0 w (4ipy + Aipo) (2.8)
i

where A;, B; are certain known functions of the generalized coordinates

q, and q,. Substituting now from (2.8) into (2.5), we arrive at an ex-

pression which is linear in p; and p,. The requirement (2.6) will be

automatically satisfied if the function N is such that

1 oN _ _(% _abn) 1 ov _ .(abm _%) (2.9)
N oy ~ T\ omy ong |/’ N oms T\ om Ors )
where
ab,.  ob, dq. b

ia  Yia 5 _ iab <i=1,...,n>
omg ~ 0g, dmg ~ 0q, oB a, B,o=1,2

It is readily seen that Equations (2.9) obtained here coincide with
Equations (9) of Chaplygin [2 ] when the quasicoordinates 7, and 7, are
the true coordinates. Indeed, setting Ty =gy, 7y = gy, it follows that
byy=by,=1, by = b,; = 0 and Equations (2.9) become

LA g (Te Ba), L Bay
N oq I\ 0gy dge /)’ N dq I\ aq 0gs :
(71=3,4,...,n)

which were given by Chaplygin.

3. A class of problems in which the introduction of quasi-
coordinates does not go beyond the limits of Chaplygin’s
theory. A comparison of Equations (1.7) and (1.8), as well as of (2.9)
and (2.10), reveals that Chaplygin’s equations and the equations for the
additional multiplier may be written in the same form, both in the case
of the true coordinates and in the case of quasicoordinates. Consequently,
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the extension of the theorem of the additional multiplier to the case of
quasicoordinates has now been entirely justified. However, in the case
of quasicoordinates, as contrasted with the case of true coordinates, in
the computation of the partial derivatives one must use Equation (1.6).
Hence, the final form of the equations in the case of quasicoordinates
may differ from the final form of the equations in the case of true co-
ordinates.

In spite of this, among Chaplygin systems there is a class of problems
for which the final equations in both cases are identical. This class
obeys the following two conditions:

1. The number ! of true coordinates, on which depend the coefficients
of the nonholonomic constraints and the Lagrangian, is smaller than the
number m of degrees of freedom of the system.

2. ‘The number k of quasicoordinates, which, together with ! true co-
ordinates, are chosen as independent parameters of the system, does not
exceed the number m — [.

Let us show that, if these two conditions are valid, then Equations
(1.7) and (2.9) coincide with the Chaplygin equations (1.8) and (2.10),
respectively.

Indeed, suppose that in (1.2) the first I (l < m) quasicoordinates
are true coordinates, and that the coefficients b, depend only on g,
..,.9;. From this it follows that b _ =8  forr, o=1, ..., I (where
8 . is Kronecker’s symbol) and b_,= 0 foro=1+1, 1 +2, ..., m

ro

Suppose that the Lagrangian, in addition to generalized velocities,
depends only on the coordinates q;, ..., g;. In the first l equations
(1.7), in view of (1.6), we have

OL (O, b\ . oL (9B b - (1':l+1, l+2,...,n>
o5, \omg — am, ) 70T 55\, T s ros=1,2,...,1

and thus the ! equations (1.7) become

LOL*_OL* oL 8bjs_abjr ‘—O <]':l+1,l—{—2,...,n> 31)
dt 8q, 00, oq; \ 09 09, T rs=1,2,..,1 (3.

Starting from Equations (1.8), let us remark that, in the class of
problems under consideration, the index j in Equations (1.8) must take

the values 1 + 1, 1+ 2, ..., n, since the n — | generalized velocities
dy+1s ---» 4, are expressible in terms of the independent parameters.
Since the quantities q;4;, q;45, ---, §, never appear, the corresponding

derivatives also do not appear, and thus the first ! equations of (1.8)
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coincide with (3.1).

It remains to verify that the remaining m — ! equations contain
identical expressions, regardless of whether (1.7) or (1.8) is used as
a starting point. In agreement with (1.6), we obtain

aL* aL*b -0 b, :6bi6 b — 0 abipj:[ _ ab;, b n _ 0b]~pé
6np - aqr re — ] anp aqr ro ’ and g aqr rovve aqr r
i=1,...07=1+141+2,...,p=14+114+2,... . mr=1,...,10
which, upon substitution into (1.7), yields
= L, 142,
d JL* oL 0b. . !
EZ‘—L-—'—B—. aq]p =0 (p:l+1,l+2,...,m (32)
o g; % r=1,2,...,1

Starting now from (1.8), the equations with indices 1 + 1, 1 + 2,...,m
again lead to (3.2), because the quantities ép p=1+11+2, ..., m
by their very definition coincide with ﬁp.

Turning now to the equations of the additional multiplier, we must
verify analogously the identity of the finite equations which are ob-
tained from (2.9) and (2.10). For m = 2 one may add, without leaving the
class of Chaplygin systems, only one quasicoordinate 7, to a true coordi-
nate ¢,. Then we have, in (2.1), that

by =1, b,=0, a,=¢q

Obyy  Obyy :abjz 9byy :%n - (i=1,2,.-.,n \
aﬂl - aql 8(]1 ! aﬂz 6q1 12 ] =2, 3, BEIETR (2]
and (2.9) takes the form
1 8N db,, 1 N 0b,, _
Vo = Pivg Noam = Aisg, (=23 ...,n (3.3)

Starting now from Equations (2.10), one must keep in mind that the
index j takes the values j = 2, 3, ..., n, and that the coordinate g,
does not appear explicitly in the coefficients b.,. From this, we obtain
immediately Equation (3.3) for the additional muitiplier N = N(q,, m,).
Thus, we have obtained a class of problems in which both procedures co-
incide (to this class belong the cases considered in [4 ]1). In this
class we have the plane-parallel nonholonomic motions of Chaplygin[2],
where Equations (2.1) have the form

¢ = @, T = JLCOs @, y =mnsing
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with the angle ¢ and the coordinates x, y being true coordinates, while
the arc length 7 is a quasicoordinate. Let us obtain the equations of

the additional multiplier N, starting with Equations (2.9) in quasicoordi-
nates. The kinetic energy T is

¢

n

= [z — @ (asing + Beos@)]® + [y + ¢ (o cos ¢ — Bsin @)]® -+ kie?

and Equations (2.8) become

A1=1, A2m—§%}ﬁsin(p, A3=E§,“’:?_?COS(P.

aB

By =0, BQZC%W—‘quﬁﬁn% Byzaﬂﬁﬁc%@—%ﬁn@
while (2.9) is just
1 aN _ oB AN _ @
N B T ar N on — otk

which coincide with the equations given by Chaplygin.

The author thanks Iu.I. Neimark for discussions concerning this paper.
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