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As is well known, the Chaplygin equations for the motion of a nonholonomic 
system [ 1 1 are derived on the assumption that the independent parameters 
are true coordinates. In [ 2 I, Chaplygin introduced a method for the 
integration of these equations, based on the use of a new variable r, 
which is related to the time t by means of the differential relation 

dz = Ndt (O-1) 

where N is a suitable function of the independent parameters. This func- 
tion was called the additional multiplier by Chaplygin. However, already 
in the case of plane nonholonomic motion, which he uses to illustrate 
his theorem by means of an example. he in fact employs quasicoordinates 
(it must be noted that the general concept of quasicoordinates was 
introduced historically later), without taking due account of the situ- 
ation. While Chaplygin’s example is strictly correct, the extension of 
his theorem of the additional multiplier still remains without theoretical 
justification. Later, some authors (see, for example, [ 3 I), expressed 
their doubts as to the validity of Chaplygin’s theorem in the case of 
quasicoordinates. With the aid of superfluous coordinates, shul’ gin [ 4 1 
showed that under certain conditions the form of Chaplygin’s equations 
is preserved when some of the superfluous coordinates are quasicoordi- 
nates. 

However, the theoretical justification of the equations of Chaplygin 
in the case of quasicoordinates has remained open. Let us mention the 
papers [ 6.7 1 of Novoselov, where an attempt is made to carry over 
Chaplygin’s theorem to the case of nonlinear nonholonomic coordinates, 
but without an actual proof of the stated results. In the present paper 
Chaplygin’s equations are extended to the case when the independent 
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Parameters are quasicoordinates; a theoretical justification of the 
method of the additional multiplier is given in this case; and there is 
given a class of problems in which the application of quasicoordinates 
lies within the limits of the theory of Chaplygin. 

1. Cbaplygin's equations for quasicoordinates. Consider a 
nonholonomic system, whose position is defined in terms of generalized 
coordinates ql, . . . . q,. Suppose that there are m degrees of freedom 
(m < n), i.e. there exist n - m nonintegrable constraints relating the 
generalized velocities i1, . . . , 4,; these constraining relations are sup- 
posed to be linear and homogeneous. ‘lhe coefficients in these equations, 
as well as the Lagrangian L, depend only on the first m generalized co- 
ordinates. 

Let us introduce as independent parameters the quasicoordinates n,, 
. . . , nrn by means of m linear equations (here, and in 
peated indices denote sumnation, as is customary): 

. 
% = GlPQP (a.fi=l,...,m) 

where the coefficients 
the n - m equations of 
generalized velocities 
velocity i,, . . . , ir,: 

aaP are functions of ql, . . . . 
nonholonomic constraints, let 

q1, -*-, 4, in terms 

bi,& (i = 1,. . ,( n; 

of the m 

6 = 1,. . .) m) (4.2) 

of the generalized velocities 
independent parameters as 

From this it follows that the variations 
are given in terms of the variations of the 

6qi = bi,h, (i = 1,. . .) n; 

what follows, re- 

(1.1) 

q,. Using (1.1) and 
us express all the 
independent quasi- 

a = 1, . . .) m) (1.3) 

We shall begin with the d’Alembert-Lagrange equations written in 
generalized coordinates 

’ d 8L 8L 
-Zagi-api 

6qi = 0 (i=l,...,n) 

Substituting the 6qi from (1.3) into the last equation, we obtain a 
sum equal to zero; in view of the independence of the variations &r,, 
this sum leads to the m separate equations 

bi, - 2 bi, = 0 (i = 1, . ., n; a = 1, . . ., m) (1.4) 
2 

In these equations, the Lagrangiau L depends on the m coordinates 
q and the n velocities ;II, ’ i.e. L = L(q, (I.>. Upon 

f&la,;;, the Gi by their values from’;;~S!~~‘we obtain a function 
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L* = L*(sp, RJ, for which 

L* (qp, k7) = L (q/3, hokJ 
From (1.5) it can be easily shown that 

which, upon substitution into (1.4), making use of the notations 

(1.6) 

lead us to 

Equations (1.7) are Chaplygin’s equations in quasicoordinates. It is 
readily seen that Equations (1.7) coincide with Chaplygin’s equations 
I1 1 when vl, . . . . vIll coincide with the true coordinates, i.e. when 

a-, = qa (a = 1, . . . . m). Indeed, in this case 

and Equations (1.7) become 

d i?L* 
-- 
dt aq, 

Equations (1.7) differ from the equations of Boltzmann-Hamel [ 5 I, in 
quasicoordinates, in the nonholonomic terms. In the construction of the 
coefficients j.2. in the ~ltzrn~-Heel equations one employs both the 
direct and theainverse matrices of the transformation linking the co- 
ordinates and the quasicoordinates. In the construction of the analogous 
terms in Equations (1.7) one employs coefficients from a single rectan- 
gular matrix (with I( rows and m columns), which does not have an inverse. 

2, Theorem of the additional multiplier in quasicoordinates. 
Consider a nonholonomic system of Chaplygin type with two degrees of 
freedom. As free parameters let us choose quasicoordinates v1 and r2, in 
terms of which all the true coordinates are given by 
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cji = bigi, + b$r2 (i==l,...,n) (2.1) 

Suppose that the Lagrangian L depends only on ql, q2 and all the 
generalized velocities $I, . . . , ;1,, and that the coefficients bi, and bi, 
are functions of q1 and qz, The equations of motion (1.7) in the system 
under consideration may be written as follows: 

where 

d r3L* aL* j, s d aL* dL* ------_ 
dt a,& an, 2 ’ 

-__-_ 
dt ,&, an2 = - 

i,s (2.2) 

(i = 1,. . *, n) (2.3) 

and the function L* = L*(ql, qz, ril, ir,) is obtained from L by replacing 
the generalized velocities Gi by their equivalents from (2.1). 

In order to transform Equations (2.2) let us introduce a new independ- 
ent variable r by means of Equation (0.1). Suppose that the kinetic 
energy T*of the system is a quadratic form in the quasicoordinates R1 
and ir,. Using primes to denote differentiation with respect to r, we ob- 
tain 

f3T* aT” aJ$ 1 3T” aT+ aT” 1 aN dT” 
-C --=:-- 
a$ 8np’ alip N an@’ z = a4,-Nag,qno’ (a, p, 5 = 1, 2) 

From these equations, in view of (l-6), we deduce that 

aT* 
bn, - aqa 

_ aT”bap = ~_-&+b,$$q,’ 
P 4 (I 

d aT* d aT” 
(a,P,5=1,2) 

-- 
dt ait, 

_ _ _k_ dN aT” b,,n,’ 
= dz an,’ N aqa ang’ 

Using these equations, Equations (2.2) become 

d aL0 aL” 71 ,R 
_I---- -= 2, 

d aL” ff?L" =_-n'R ---- 
dz &I, I%, dz &t2r an, 1 (2.4) 

where Lo= To- V, and the function R is defined by 

R&-~~~+~~.& 
1 

(2.5) 

with 
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Equation (2.4) takes the ordinary form of the second-order Lagrange 
equations, provided that the function N is chosen so that the following 
equation holds: 

R=O (2.6) 

Let us introduce canonical variables 

p1 = as = N 2 (L,x,’ $- Mn2’), 
1 

~2 = $ = N2 (Mn,’ -i_ L,n,‘) (2.7) 

Replacing in dL/a4i the quantities ;li by p1 and p2, by means of 
Equations (2.1) and (2.7), we cbtain 

where Ai, Bi are certain known functions of the generalized coordinates 

q1 and q2. Substituting now from (2.8) into (2.5), we arrive at an ex- 
pression which is linear in p1 and p2. ‘Ihe requirement (2.6) will be 
automatically satisfied if the function N is such that 

where 
abia ‘bi, ‘4, abia b 

c 
i=l,...,n _---_- 

axp- aq, a3cg aq, OB u, p, 0 = I,2 > 

It is readily seen that Equations (2.9) obtained here coincide with 
Equations (9) of Chaplygin [ 2 1 when the quasicoordinates s1 and rr2 are 
the true coordinates. Indeed, setting s1 = ql, ti, = q2, it follows that 
b,, = b,, = 1, b,, = b,, = 0 and bations (2.9) become 

1 dN -----_ 
N a9 

I alv 
Nag, 

(j = 3,4, . . ., n) 

which were given by Qlaplygin. 

3. A class of problems in which the introduction of quasi- 
coordinates does not go beyond the limits of Chaplygin's 
theory. A comparison of Equations (1.7) and (1.‘8), as well as of (2.9) 
and (2.101, reveals that Chaplygin’s equations and the equations for the 
additional multiplier may be written in the same form, both in the case 
of the true coordinates and in the case of quasicoordinates. Consequently, 
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the extension of the theorem of the additional multiplier to the case of 
quasicoordinates has now been entirely justified. However, in the case 
of quasicoordinates, as contrasted with the case of true coordinates, in 
the computation of the partial derivatives one must use Equation (1.6). 
Hence, the final form of the equations in the case of quasicoordinates 
may differ from the final form of the equations in the case of true co- 
ordinates. 

In spite of this, among Chaplygin systems there is a class of problems 
for which the final equations in both cases are identical. ‘lhis class 
obeys the following two conditions: 

1. ‘lhe number 1 of true coordinates,on which depend the coefficients 
of the nonholonomic constraints and the Lagrangian, is smaller than the - - 
number m of degrees of freedom of the system. 

2. ‘Ihe number k of quasicoordinates, which, 
ordinates, are chosen as independent parameters 
exceed the number m - 1. 

together with 1 true co- 
of the system, does not 

Let us show that, if these two conditions are valid, then Equations 
(1.7) and (2.9) coincide with the Chaplygin equations (1.8) and (2.10), 
respectively. 

Indeed, suppose that in (1.2) the first E (1 < ml quasicoordinates 
are true coordinates, and that the coefficients bi, depend only on ql, 

***, . qz. From this it follows that b, = 6, for r, o = 1, . . . , I (where 

6 ye is Kronecker’s symbol) and b,, I 0 for o = 1 + 1, 2 + 2, . . . , m. 

Suppose that the Lagrangian, in addition to generalized velocities, 
depends only on the coordinates ql, . . . . ql. In the first 1 equations 
(l.?), in view of (1.6), we have 

and thus the 1 equations (1.7) become 

Starting from Equations (1.8), let us remark that, in the class of 
problems under consideration, the index j in Equations (1.8) must take 
the values 1 + 1, 1 + 2, . . . , n, since the n - 1 generalized velocities 

41+1, en., in are expressible in terms of the independent parameters. 
Since the quantities ql+l, ql+2, . . . . q, never appear, the corresponding 
derivatives also do not appear, and thus the first 1 equations of (1.8) 
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coincide with (3.1). 

It remains to verify that the remaining m - 1 equations contain 
identical expressions, regardless of whether (1.7) or (1.8) is used as 
a starting point. In agreement with (1.6)) we obtain 

aL* _ aL* b,, = 0, 
an, - aqr 

2 = ‘2 b,, = 0, 
P r 

(i = 1,. . ., n; j=Z+l, I+2 ,..., n; p=l+l,l+2 ,..., m; r=l,..., 1) 

which, upon substitution into (1.7), yields 

d aL* ay, abj, - 
j=I+1,1+2,...,n 

_--- - 
dt a; 

Qr = 0 p=i+l, l+2,...,m (3.2) 
P aii a% P = 1, 2,. . .( 1 

Starting now from (1.8)) the equations with indices 1 + 1, 1 + 2,. . . ,m 

again lead to (3.2), because the quantities iP (p = 2 + 1, 1 + 2, . .., m) 

by their very definition coincide with hp. 

Turning now to the equations of the additional multiplier, we must 
verify analogously the identity of the finite equations which are ob- 
tained from (2.9) and (2.10). For m = 2 one may add, without leaving the 
class of Chaplygin systems, only one quasicoordinate s2 to a true coordi- 
nate g,. Then we have, in (2.1), that 

b,,=l, b,,=O, n,=ql 

and (2.9) takes the form 

1 aN 1 aN ab. 

-- 
- N aql =b,.ifbj2_ 3 aql 9 --__ N an, A.2 3 agl (j = 2, 3, . .( n) (3.3) 

Starting now from Equations (2.10), one must keep in mind that the 
index j takes the values j = 2, 3, . . . , n, and that the coordinate q2 
does not appear explicitly in the coefficients b.,. From this, we obtain 
imnediately Equation (3.3) f or the additional mu i 
lhus ) 

tiplier N= N(q,, n2). 
we have obtained a class of problems in which both procedures co- 

incide (to this class belong the cases considered in [ 4 1 1. In this 
class we have the plane-parallel nonholonomic motions of Chaplygin [2 1, 
where Equations (2.1) have the form 

(P = cp, j. = jlcoscp, i = j, sin cp 



584 N.A. Fufaev 

with the angle q5 and the coordinates x, y being true coordinates, while 
the arc length n is a quasicoordinate. Let us obtain the equations of 
the additional multiplier N, starting with Equations (2.9) in quasicoordi- 
nates. The kinetic energy T is 

and Equations (2.8) become 

A,= 1, A*~--....!L 
c@ + /c” sin cp, &=Z 

~12 + k2 
cos qJ. 

B, = 0, sinip, coscp + sincp 

while (2.9) is just 

1 aN 4 1 aN u “.- - = -- _-=;-- 
N acp a2+ka ’ N an a2 -+ k2 

which coincide with the equations given by Cbaplygin. 

'Ihe author thanks Iu.1. Neimark for discussions concerning this paper. 
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